

Impact Estimate of Palos Verdes Offshore Routing

D. Hajnal, J.H.Hoffman D. Moch-Mooney, B.T.Simmons 15 Feb 2000

Organization: F046

Project: Airspace Analysis & Design

Background

- Residents of Palos Verdes would like turboprop overflights moved offshore
 - Extra flying distance certainly results
 - Is there a delay cost as well?
- Possibility exists of critical backup of departures, leading to gridlock on airport surface
 - To model the impact on ground operations and arrivals of moving a departure fan, TAAM is preferred tool
- Estimate of the impact of proposed changes on users is needed

The Bottom Line

- Increased flying distances is a minor impact
- Increased ground delay time is at least 80% of total cost
- In millions of dollars per year, using Air Transportation Association cost estimates:

	Ground	Airborne	Total Penalty
1 mile offshore	\$34.8	\$1.1	\$35.8
2 miles offshore	e \$46.4	\$5.8	\$52.2
3 miles offshore	e \$58.0	\$10.6	\$68.5
5 miles offshore	e \$71.5	\$14.2	\$85.7

Approach

- Simulate 1 VMC day
 - 0700-2200 local time
 - OAG traffic + ETMS flights for cargo, GA, etc.
 - ZLA sectorization from July 1999 ACES
 - Validate against SCT ARTS trajectories
- Extract metrics
 - Excess airborne time
 - Increased ground delay
- Convert to direct operating costs using data from the ATA

Simulated Traffic

- Thursday, 26 Aug 1999
- Grey period excluded from simulation

What Was Simulated

- LAX
 - Ground movement
 - Runway assignment rules
 - MIT on inner-runway arrivals
 - Arrival & departure procedures
- SNA, LGB
 - 1 runway only
 - Arrival & departure procedures
- Traffic Flow Management
 - 15 MIT on GMN, DAG, TRM from 1400 to 1700 PST
 - AAR of 84 in VMC, 68 in IMC

What Was Omitted

- Other airports
 - "Pointwise" modelling
- Overflights in TRACON
- Conflict detection and resolution
 - Procedural separation of traffic is assumed

Departure Fans: Current and Simulated

Qualitative Impact of the Offshore Reroute

- The "fan" must now be kept in trail
 - Departure delay is insensitive to the details of the routing
 - Very sensitive to traffic volume
- More in-trail distance must be flown
 - Independent of traffic volume
- SNA departures over DAG must be rerouted
 - In trail with LAX Loop departures
- If aircraft are put more than one mile offshore,
 - TANDY arrivals into LGB, SNA must be rerouted westward

Alternative Departure Fans: 1 Mile Offshore

Alternative Departure Fans: 2 Miles Offshore

Alternative Departure Fans: 3 Miles Offshore

Alternative Departure Fans: 5 Miles Offshore

Daily OPSNET Traffic Counts for LAX

Simulation Results: Qualitative Observations from the 90th Percentile Day

- Queues of aircraft departing 25R seldom reached back to terminal 8 in the baseline; frequently in offshore scenarios
- Offshore routing has no significant effect on arrival delays in VFR
 - Usage of inner runways for arrivals in VFR dropped from 150 to 111 in the simulated period when offshore routing was used
- IFR operations were gridlocked on the airport surface
 - The 90th percentile traffic level can probably not be maintained in IMC, even in current conditions

Calculating Costs

- Include fuel, crew, and direct maintenance
- Air Transport Association estimates that delay costs
 - \$23.32/minute at the gate
 - \$29.79/minute on the taxiway
 - \$46.76/minute in the air
 - All figures in 1998 dollars

Annualization of Penalties

- OPSNET traffic counts for LAX
 - Simulated traffic levels are 90th percentile day for Nov 98 - Nov 99
 - Multiply the 90th percentile day by 314 to get annual figures
 - Steadily increasing demand means these delay/cost figures may be underestimates

Simulation Results: Ground Delays

- Taxi-out time is most sensitive metric
- This simulation directed departure delays due to spacing on departure routes to be taken on the taxiway
 - Excessive congestion resulted from taking delays at gate, leading to gridlock

Simulation Results: Ground Delays

• Using Air Transport Association 1998 cost figures,

	Mean		Per day	Per Year	Cost per Year
	Taxi-out	Penalty	(min)	(min)	(\$M)
Baseline	18.2	_			
1 mile offshore	21.8	3.6	3717	1,168,100	\$34.8
2 miles offshore	23	4.8	4956	1,557,466	\$46.4
3 miles offshore	24.2	6	6195	1,946,833	\$58.0
5 miles offshore	25.6	7.4	7641	2,401,094	\$71.5

Simulation Results: Airborne Delays

• Using Air Transport Association 1998 cost figures,

		LAX	ζ.	SNA		Daily	Annual
		departures a	departures arrivals departure arrivals			Total	(\$M)
\rightarrow	1 mile	71	0	3	20	72	
la	2 mile	317	0	48	49	395	
Delay	3 mile	563	0	93	78	718	
Π	5 mile	765	2	93	103	963	
	1 mile	\$ 3,320	\$ -	\$ 140	\$ 935	\$ 3,367	\$1.06
Cost	2 mile	\$ 14,823	\$ -	\$ 2,244	\$ 2,291	\$ 18,470	\$5.80
$ olimits_{\mathcal{O}} $	3 mile	\$ 26,326	\$ -	\$ 4,349	\$ 3,647	\$ 33,574	\$10.55
	5 mile	\$ 35,771	\$ 94	\$ 4,349	\$ 4,816	\$ 45,030	\$14.15

Simulation Results: Cost Impact on Jet Aircraft

	Ground	Airborne	Total Penalty
1 mile offshore	\$19.9	\$0.7	\$20.6
2 miles offshore	\$27.3	\$4.3	\$31.6
3 miles offshore	\$34.8	\$7.8	\$42.6
5 miles offshore	\$42.6	\$10.5	\$53.1

Simulation Results: Cost Impact on Turboprops

	Ground	Airborne	Total Penalty
1 mile offshore	\$14.9	\$0.3	\$15.3
2 miles offshore	\$19.1	\$1.5	\$20.6
3 miles offshore	\$23.2	\$2.7	\$25.9
5 miles offshore	\$28.9	\$3.7	\$32.6

Sensitivity Analysis: Traffic Demand

- 99th percentile day (2327 ops)
 - Baseline shows more delays due to volume
 - Taxi-out time rises from 18 to 25 minutes per flight
 - Arrival delay rises from 12 to 21 minutes per flight
 - Regular blocking of gates by departure queues
 - Offshore scenarios show non-viable operations
 - Hundreds of flights terminated because all runway exits are occupied
 - Simulation breaks down due to excessive traffic
- Possible conclusion: with offshore routes, LAX will no longer have capacity to handle traffic at this level
 - Airport moves smoothly with an AAR of 45
 - 45 * 24 hours = 1080 arrivals/day, which is too few

TAAM Simulation Details: Airport Surface

TAAM Simulation Details: Airport Surface

- Simple gate assignment at LAX
 - Major airlines to appropriate terminals
 - GA, Cargo away from terminals
- Turboprop Shotgun on 25R
 - Use Taxiway C for props, B for jets
 - Define "stop and wait" rule based on previous aircraft

Result was typically 3-6 turboprops in a cluster

TAAM Simulation Details: Airspace

- Arrival and departure procedures derived from
 - SCT Standard Operating Procedures
 - Jeppesen DP/STAR plates
 - Altitude and speed restrictions
 - Holding patterns
 - Descriptions by facility personnel
- Results are independent of variations in
 - Radar separation on final from 2.5-3 nmi
 - Lengths of extended downwinds on FIM approaches

TAAM Simulation Details: Modeling the Baseline Turboprop Departure Fan

- Turn to new heading upon reaching specified altitude
- Starting weights of aircraft were randomized
 - Minimum and maximum climb rates from manufacturers' data
- Cross out of LAX Class B airspace above 5000 ft
- Result is a "fan" of departures that do not need to be kept in trail

